In many cases premature ejaculation resolves on its own over time without the need for medical treatment. Practicing relaxation techniques or using distraction methods may help you delay ejaculation. For some men, stopping or cutting down on the use of alcohol, tobacco, or illegal drugs may improve their ability to control ejaculation. Some guys are asking about how to buy kamagra online? Aye! Here it moves - simply click this link and get your answer. Among many recommended places in online south africa to order kamagra online south africa without rx is my favourite. Try it out and know that buying kamagra online is easy. Premature ejaculation is uncontrolled ejaculation either before or shortly after sexual penetration, with minimal sexual stimulation and before the person wishes. It may result in an unsatisfactory sexual experience for both partners. This can increase the anxiety that may contribute to the problem. Premature ejaculation is one of the most common forms of male sexual dysfunction and has probably affected every man at some point in his life.Ethical promotion helps to ensure that healthcare professionals have access to information they need, that patients have access to the medicines they need and that medicines are prescribed and used in a manner that provides the maximum healthcare benefit to patients. Going to Website of online pharmacy in hong kong is the most simplified method to find out how to purchase topamax in hong kong cheap. If you buy generic alternative of topamax its cost is often less. The pharmaceutical industry has an obligation and responsibility to provide accurate information and education about its products to healthcare professionals in order to establish a clear understanding of the appropriate use of prescription medicines. Whilst looking information about how to buy low dose naltrexone simply go to this webpage.

When NASA’s Lunar Laser Communication Demonstration (LLCD) begins operation aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission managed by NASA’s Ames Research Centre, it will attempt to show two-way laser communication beyond Earth is possible, expanding the possibility of transmitting huge amounts of data.
This new ability could one day allow for 3D High Definition video transmissions in deep space to become routine.

“The goal of the LLCD experiment is to validate and build confidence in this technology so that future missions will consider using it,” says Don Cornwell, LLCD manager. “This unique ability developed by MIT (Massachusetts Institute of Technology Lincoln Laboratory), has incredible application possibilities and we are very excited to get this instrument off the ground.”

Since NASA first ventured into space, through the moon landings, shuttle program, and unmanned exploration missions, radio frequency communication also known as RF, has been the communications platform used. But RF is reaching its limit just as demand for more data capacity continues to increase.

The development of laser communications will give NASA the ability to extend communication applications such as increased image resolution and even 3-D video transmission into deep space.
LLCD is NASA’s first dedicated system for two-way communication using laser instead of radio waves.

“LLCD is designed to send six times more data from the moon using a smaller transmitter with 25 percent less power as compared to the equivalent state-of-the-art radio (RF) system,” says Cornwell. “Lasers are also more secure and less susceptible to interference and jamming.”

The LLCD experiment is hosted aboard NASA’s LADEE: a 100-day robotic mission designed, built, integrated, tested and will be operated by Ames. LADEE will attempt to confirm whether dust caused a mysterious glow on the lunar horizon astronauts observed during several Apollo missions and explore the moon’s tenuous, exotic atmosphere.

Launch of the LADEE spacecraft is set for September aboard a US Air Force Minotaur V rocket, an excess ballistic missile converted into a space launch vehicle and operated by Orbital Sciences, from NASA’s Wallops Flight Facility.

The LADEE spacecraft will take 30 days to reach the moon because of its flight path. LLCD will begin operations shortly after arrival into lunar orbit and continue for 30 days afterward.
LLCD’s main mission objective is to transmit hundreds of millions of bits of data per second from the moon to Earth. This is equivalent to transmitting more than 100 HD television channels simultaneously.

LLCD receiving capability will also be tested as tens of millions of bits per second are sent from Earth to the spacecraft. These demonstrations will prove the technology for increased bandwidth for future missions is possible.

There is a primary ground terminal at NASA’s White Sands Complex in New Mexico, to receive and transmit LLCD signals. The team at MIT designed, built, and tested the terminal. They also will be responsible for LLCD’s operation at that site.

There are two alternate sites, one located at NASA’s Jet Propulsion Laboratory in California, which is for receiving only. The other is being provided by the European Space Agency on the Spanish island of Tenerife, off the coast of Africa. It will have two-way communication capability with LLCD. “Having several sites gives us alternatives which greatly reduces the possibility of interference from clouds,” says Cornwell.

LLCD is a short duration experiment and the precursor to NASA’s long duration demonstration, the Laser Communications Relay Demonstration (LCRD). It also is a part of the agency’s Technology Demonstration Missions Program, which is working to develop crosscutting technology capable of operating in the rigors of space. LCRD is scheduled to launch in 2017.

NASA engineers believe this technology becomes even more advantageous for communications beyond Earth’s orbit. In the past, NASA has experimented with sending low amounts of individual pulses to cameras on far-away space probes near Jupiter, Mars, and Mercury.

Recently, an image of Leonardo da Vinci’s painting, the Mona Lisa, was transmitted to NASA’s Lunar Reconnaissance Orbiter (LRO) spacecraft orbiting the moon. “But this was done at only hundreds of data bits per second,” says Cornwell. “LLCD will be the first dedicated optical communication system and will send data millions of times faster.”

The European Space Agency already has successfully demonstrated laser communication between satellites in Earth orbit. Recently they launched Alphasat to demonstrate laser transmission between a low-earth orbit satellite and a satellite in geostationary Earth orbit. LLCD’s laser link from the moon will be ten times farther away.

NASA is looking upon laser communication as the next paradigm shift in future space communication, especially deep space.

“We can even envision such a laser-based system enabling a robotic mission to an asteroid,” says Cornwell. “It could have 3-D, high-definition video signals transmitted to Earth providing essentially ‘telepresence’ to a human controller on the ground.”

Pictured is an artist’s rendering of the LADEE satellite in orbit.

Image Credit: NASA