subscribe: Daily Newsletter

 

IBM breakthrough will shrink supercomputers

0 comments

IBM has announced a new scientific breakthrough that will enable supercomputers with thousands of cores to fit into the equivalent of today's laptop PC. And these supercomputers of the future will use the same amount of electricity as a light bulb. 

IBM researchers have detailed a significant milestone in the quest to send information between multiple cores – or “brains” – on a chip using pulses of light through silicon, instead of electrical signals on wires.
The breakthrough – known in the industry as a silicon Mach-Zehnder electro-optic modulator – converts electrical signals into pulses of light. The IBM modulator is 100- to 1 000-times smaller in size compared to previously demonstrated modulators of its kind, paving the way for many such devices and eventually complete optical routing networks to be integrated onto a single chip.
This could significantly reduce cost, energy and heat while increasing communications bandwidth between the cores more than a 100-times over wired chips.
“Work is underway within IBM and in the industry to pack many more computing cores on a single chip, but today’s on-chip communications technology would overheat and be far too slow to handle that increase in workload,” says Dr TC Chen, vice-president: Science & Technology at IBM Research. “What we have done is a significant step toward building a vastly smaller and more power-efficient way to connect those cores, in a way that nobody has done before.”
Today, one of the most advanced chips in the world – IBM’s Cell processor which powers the Sony Playstation 3 – contains nine cores on a single chip. The new technology aims to enable a power-efficient method to connect hundreds or thousands of cores together on a tiny chip by eliminating the wires required to connect them. Using light instead of wires to send information between the cores can be 100-times faster and use 10-times less power than wires.
“We believe this is a major advancement in the field of on-chip silicon nanophotonics,” says Dr Will Green, the lead IBM scientist on the project. “Just like fibre optic networks have enabled the rapid expansion of the Internet by enabling users to exchange huge amounts of data from anywhere in the world, IBM’s technology is bringing similar capabilities to the computer chip.”
IBM's optical modulator performs the function of converting a digital electrical signal carried on a wire, into a series of light pulses, carried on a silicon nanophotonic waveguide.
First, an input laser beam is delivered to the optical modulator, which acts as a very fast “shutter” which controls whether the input laser is blocked or transmitted to the output waveguide. When a digital electrical pulse arrives from a computer core to the modulator, a short pulse of light is allowed to pass through at the optical output. In this way, the device “modulates” the intensity of the input laser beam, and the modulator converts a stream of digital bits from electrical signals into light pulses.