Intel researchers have moved a step closer towards ultra-high-speed computing by achieving world-record performance in silicon photonics using a silicon-based Avalanche Photodetector (APD).

The research results, published in Nature Photonics, could lead to significantly lower costs and improved performance compared to current commercially available optical devices.
Silicon photonics is an emerging technology using standard silicon to send and receive optical information among computers and other electronic devices. The technology aims to address future bandwidth needs of data-intensive computing applications such as remote medicine and lifelike 3-D virtual worlds.
Ultra-fast transfer of data will be essential for future computers powered by many processor cores and silicon photonics-based technology could deliver higher-speed mainstream computing at a lower cost. This advance builds upon previous Intel breakthroughs such as fast silicon modulators and hybrid silicon lasers. Combined, these technologies could lead to the creation of entirely new kinds of digital machines capable of far greater performance than today.
A team led by Intel researchers created the silicon-based APD, a light sensor that achieves superior sensitivity by detecting light and amplifying weak signals as light is directed onto silicon. This APD device used silicon and CMOS processing to achieve a "gain-bandwidth product" of 340 GHz – the best result ever measured for this key APD performance metric. This opens the door to lower the cost of optical links running at data rates of 40Gbps or higher and proves, for the first time, that a silicon photonics device can exceed the performance of a device made with traditional, more expensive optical materials such as indium phosphide.
"This research result is another example of how silicon can be used to create very high-performing optical devices," says Mario Paniccia, Intel Fellow and director of the company's Photonics Technology Lab. "In addition to optical communication, these silicon-based APDs could also be applied to other areas such as sensing, imaging, quantum cryptography or biological applications."
Intel worked with industry and academic collaborators, and the research was jointly funded by Defense Advanced Research Projects Agency (Darpa).