In many cases premature ejaculation resolves on its own over time without the need for medical treatment. Practicing relaxation techniques or using distraction methods may help you delay ejaculation. For some men, stopping or cutting down on the use of alcohol, tobacco, or illegal drugs may improve their ability to control ejaculation. Many guys interested about how to buy cialis online? Aye! There it moves - just click this link and find out how. One of the recommended webpages in south africa to buy cialis in south africa with no rx is our favorite. Have look and find that buying generic cialis is easy. Premature ejaculation is uncontrolled ejaculation either before or shortly after sexual penetration, with minimal sexual stimulation and before the person wishes. It may result in an unsatisfactory sexual experience for both partners. This can increase the anxiety that may contribute to the problem. Premature ejaculation is one of the most common forms of male sexual dysfunction and has probably affected every man at some point in his life.Ethical promotion helps to ensure that healthcare professionals have access to information they need, that patients have access to the medicines they need and that medicines are prescribed and used in a manner that provides the maximum healthcare benefit to patients. Going to Website of pharmacy online in hong kong is the most simplified method to find out how to purchase kamagra in hong kong online. When you order generic alternative of kamagra online its price is always reduced. The pharmaceutical industry has an obligation and responsibility to provide accurate information and education about its products to healthcare professionals in order to establish a clear understanding of the appropriate use of prescription medicines. If you are looking info about how to buy low dose naltrexone just navigate this webpage.

Data collected by NASA’s Juno mission to Jupiter indicate that the atmospheric winds of the gas-giant planet run deep into its atmosphere and last longer than similar atmospheric processes found here on Earth.
The findings will improve understanding of Jupiter’s interior structure, core mass and, eventually, its origin.

Other Juno science results released by NASA include that the massive cyclones that surround Jupiter’s north and south poles are enduring atmospheric features and unlike anything else encountered in our solar system.

“These astonishing science results are yet another example of Jupiter’s curve balls, and a testimony to the value of exploring the unknown from a new perspective with next-generation instruments. Juno’s unique orbit and evolutionary high-precision radio science and infrared technologies enabled these paradigm-shifting discoveries,” says Scott Bolton, principal investigator of Juno from the Southwest Research Institute. “Juno is only about one-third the way through its primary mission, and already we are seeing the beginnings of a new Jupiter.”

The depth to which the roots of Jupiter’s famous zones and belts extend has been a mystery for decades. Gravity measurements collected by Juno during its close flybys of the planet have now provided an answer.

“Juno’s measurement of Jupiter’s gravity field indicates a north-south asymmetry, similar to the asymmetry observed in its zones and belts,” says Luciano Iess, Juno co-investigator from Sapienza University, and lead author on a Nature paper on Jupiter’s gravity field.

On a gas planet, such an asymmetry can only come from flows deep within the planet; and on Jupiter, the visible eastward and westward jet streams are likewise asymmetric north and south. The deeper the jets, the more mass they contain, leading to a stronger signal expressed in the gravity field. Thus, the magnitude of the asymmetry in gravity determines how deep the jet streams extend.

“Galileo viewed the stripes on Jupiter more than 400 years ago,” says Yohai Kaspi, Juno co-investigator from the Weizmann Institute of Science, and lead author of a Nature paper on Jupiter’s deep weather layer. “Until now, we only had a superficial understanding of them and have been able to relate these stripes to cloud features along Jupiter’s jets.

“Now, following the Juno gravity measurements, we know how deep the jets extend and what their structure is beneath the visible clouds. It’s like going from a 2D picture to a 3D version in high definition.”

The result was a surprise for the Juno science team because it indicated that the weather layer of Jupiter was more massive, extending much deeper than previously expected. The Jovian weather layer, from its very top to a depth of 3 000 km, contains about 1% of Jupiter’s mass (about three Earth masses).

“By contrast, Earth’s atmosphere is less than one millionth of the total mass of Earth,” says Kaspi “The fact that Jupiter has such a massive region rotating in separate east-west bands is definitely a surprise.”

The finding is important for understanding the nature and possible mechanisms driving these strong jet streams. In addition, the gravity signature of the jets is entangled with the gravity signal of Jupiter’s core.

Another Juno result suggests that beneath the weather layer, the planet rotates nearly as a rigid body.

“This is really an amazing result, and future measurements by Juno will help us understand how the transition works between the weather layer and the rigid body below,” says Tristan Guillot, a Juno co-investigator from the UniversitĂ© CĂ´te d’Azur, and lead author of the paper on Jupiter’s deep interior. “Juno’s discovery has implications for other worlds in our solar system and beyond.

“Our results imply that the outer differentially-rotating region should be at least three times deeper in Saturn and shallower in massive giant planets and brown dwarf stars.”

A striking result released last week is the beautiful new imagery of Jupiter’s poles captured by Juno’s Jovian Infrared Auroral Mapper (JIRAM) instrument. Imaging in the infrared part of the spectrum, JIRAM captures images of light emerging from deep inside Jupiter equally well, night or day. JIRAM probes the weather layer down to 50km to 70km below Jupiter’s cloud tops.

“Prior to Juno we did not know what the weather was like near Jupiter’s poles. Now, we have been able to observe the polar weather up-close every two months,” says Alberto Adriani, Juno co-investigator from the Institute for Space Astrophysics and Planetology, and lead author of a new paper.

“Each one of the northern cyclones is almost as wide as the distance between Naples, Italy and New York City — and the southern ones are even larger than that. They have very violent winds, reaching, in some cases, speeds as great as 220 mph (350 kph).

“Finally, and perhaps most remarkably, they are very close together and enduring. There is nothing else like it that we know of in the solar system.”

Jupiter’s poles are a stark contrast to the more familiar orange and white belts and zones encircling the planet at lower latitudes.

Its north pole is dominated by a central cyclone surrounded by eight circumpolar cyclones with diameters ranging from 4 000km to 4 600km across. Jupiter’s south pole also contains a central cyclone, but it is surrounded by five cyclones with diameters ranging from 5 600km 7 000km in diameter.

Almost all the polar cyclones, at both poles, are so densely packed that their spiral arms come in contact with adjacent cyclones. However, as tightly spaced as the cyclones are, they have remained distinct, with individual morphologies over the seven months of observations detailed in the paper.

“The question is, why do they not merge?” said Adriani. “We know with Cassini data that Saturn has a single cyclonic vortex at each pole. We are beginning to realize that not all gas giants are created equal.”

Pictured: This composite image, derived from data collected by the Jovian Infrared Auroral Mapper (JIRAM) instrument aboard NASA’s Juno mission to Jupiter, shows the central cyclone at the planet’s north pole and the eight cyclones that encircle it.
Credits: NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM